Primary Lithium Cells
Lithium Manganese Dioxide LiMnO₂
CONTENT

1. **GENERAL INFORMATION** 3–9
 - 1.1 Constructions of Lithium Cells 4–5
 - 1.2 Characteristics and Applications 6
 - 1.3 Applications 7–8
 - 1.4 Selection Guide 9

2. **CR PRIMARY LITHIUM BUTTON CELLS** 11–26
 - 2.1 Types – Technical Data 12–22
 - 2.2 Assemblies 23–26

3. **CR HIGH CAPACITY PRIMARY LITHIUM CYLINDRICAL CELLS** 27–33
 - 3.1 Types – Technical Data 28–31
 - 3.2 Assemblies 32–33

4. **CR HIGH POWER PRIMARY LITHIUM CYLINDRICAL CELLS** 35–40
 - 4.1 Types – Technical Data 36–39
 - 4.2 Assemblies 40

5. **GENERAL DESIGN CHARACTERISTICS** 41–48
 - 5.1 Safety Tests 44
 - 5.2 Safety Guidelines 45
 - 5.3 OEM – Application Check List 46–48

Subject to change without further notice. No responsibility for the correctness of this information. For latest technical data please refer to our data sheets which you will find on our website www.varta-microbattery.com.

© by VARTA Microbattery GmbH
The VARTA Microbattery lithium manganese dioxide cell chemistry was one of the first solid cathode cells commercially developed and is still the most widely used system today. These cells offer an excellent shelf life, good high-rate and low-rate capability, a wide operating temperature range and availability in button and cylindrical cell designs. Potential design-in applications for these products are electronic, telecommunication, metering, instrumentation, office and other portable equipment use. Based on the outstanding cell performance and reliability of these products, they have been able to meet and exceed the requirements of our customer base worldwide.

1. GENERAL INFORMATION

Advantages for VARTA Microbattery LiMnO₂ Cells

- High open circuit and load voltage (above 3.0 volts per cell)
- High energy density (400 Wh/kg and 600 Wh/l)
- High capacity and high rate cell construction
- Operation over a wide temperature range
- Flat discharge profile under low to medium rate applications
- Low self discharge (less than 1% per year at RT)
- Superior shelf life and operational life
 (Up to 10 years and more)
- UL Recognition
- Ability to provide a variety of laser welded termination tabs for all cell types

Energy Density for Primary Systems

Comparison of different primary battery systems

<table>
<thead>
<tr>
<th></th>
<th>Lithium</th>
<th>Silver-oxide</th>
<th>Alkaline</th>
<th>Zinc-chloride</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Energy Density Comparison Graph]
VARTA Microbattery offers a complete range of primary lithium manganese dioxide cylindrical and button cells for memory backup and portable applications worldwide. The cylindrical cell configurations offer the high-capacity bobbin construction and high-power spirally wound product. The bobbin construction is targeted at low to moderate power requirements, dedicated for applications requiring up to a 10 years operational life at 20°C. Our spirally wound electrode product offers high-rate discharge capability, with an operational life in excess of 5 years. For compact and light weight equipment use we have a complete range of high performance primary lithium button cells.

Lithium Cylindrical Batteries

BOBBIN CONSTRUCTION
Schematic construction of a Li/MnO₂ cylindrical cell (CR 1/2 AA).

SPIRAL CONSTRUCTION
Schematic construction of a Li/MnO₂ cylindrical cell (CR 2/3 AH).
Lithium Button Cells
Schematic construction of a Li/MnO₂ Button Cell

Sealing Technologies
CRIMP-SEALING
CR High Power Cylindrical Cells

LASER-SEALING
CR High Capacity Cylindrical Cells
1.2 CHARACTERISTICS AND APPLICATIONS

Main Applications

Both mechanical and electrical properties, together with reliability, ensure that VARTA Microbattery lithium batteries meet the requirements of modern electronics. They are therefore ideally suited as power sources for the long term supply of microelectronic circuitry.

Main Characteristics

- Long life expectancy and long operational life
- Low self discharge rate
- High energy density
- High cell voltage (3 V)
- Wide temperature range
- High operating safety
- High reliability
- Resistance to corrosion with stainless steel case
- No leakage problems with an organic non-corrosive electrolyte

Temperature characteristics

Temperature characteristics of CR 1/2 AA and CR AA cylindrical cells
(Load: 5.6 kΩ CR AA, 12 kΩ CR 1/2 AA)

A = -40°C
B = +80°C
C = +60°C
D = -20°C
E = +23°C

System properties of VARTA Microbattery Lithium Cells

<table>
<thead>
<tr>
<th>Series</th>
<th>CR Series Cylindrical Cells</th>
<th>CR Series Button Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>Li/MnO₂</td>
<td>Li/MnO₂</td>
</tr>
<tr>
<td>Gravimetric energy density</td>
<td>250–300 Wh/kg</td>
<td>250–300 Wh/kg</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>3.0 V</td>
<td>3.0 V</td>
</tr>
<tr>
<td>Open circuit voltage</td>
<td>3.2 V</td>
<td>3.2 V</td>
</tr>
<tr>
<td>Available capacity range</td>
<td>950–2000 mAh</td>
<td>25–560 mAh</td>
</tr>
<tr>
<td>Storage life</td>
<td>>10 years¹</td>
<td>>10 years¹</td>
</tr>
<tr>
<td>Self discharge d=20°C</td>
<td><1% p.a.</td>
<td><1% p.a.</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-30 ... +75°C²</td>
<td>-20 ... +65°C</td>
</tr>
<tr>
<td>Maximum temperature range (short term)³</td>
<td>-40 ... +80°C⁴</td>
<td>-40 ... +80°C⁴</td>
</tr>
<tr>
<td>Storage temperature⁵</td>
<td>-55 ... +70°C⁵</td>
<td>-55 ... +70°C⁵</td>
</tr>
</tbody>
</table>

¹) CR 2/3 AH, CR 2; (>5 years)
²) CR 2/3 AH (-20 ... +65°C)
³) max. two weeks
⁴) µA-range
⁵) Recommended room temperature
1.3 APPLICATIONS

Utility Meters

Electricity Meters, Gas Meters, Water Meters, Calorimeters, Automatic Meter Reading (AMR), Heat Cost Allocator.

Safety/Security Systems

Automotive Electronics

Asset Tracking

Automation

Memory back-up, Intelligent Interfaces, Personal Computers, Intelligent Typewriters, Address Printers, Envelopment Franking Machines, Cash Points, Scales, Copy Machines, Cash Register.

Vending Machines

Ticket Vending Machines, Newspaper Vending Machines, Cigarette Vending Machines, Sweet Vending Machines, Drink Vending Machines, Parking Meter.

High End Consumer

Audio and Video Memory back-up and RTC, Video Games, Gambling Machines, SCUBA Diving Meters, Altimeters, Marine Electronics, Ski Bindings, Portable Timing Units for sports events, Pigeon Flight Time Recorders.

Industrial/Medical Instrumentation

1.4 SELECTION GUIDE

To enable battery selection the following is required:

- discharge current and maximum discharge time
- capacity
- operating temperature range
- self discharge
- surplus capacity requirement
- cell size

CAPACITY RETENTION
Capacity retention characteristics of VARTA Microbattery Lithium Cells
Cylindrical Cells CR…AA and CR…A

STORAGE BEHAVIOR
Typical storage behaviour at room temperature 21°C of CR 1/2 AA

BATTERY SELECTION DIAGRAMM
Discharge current / Operating time
2. CR PRIMARY LITHIUM BUTTON CELLS
2.1 TYPES – TECHNICAL DATA

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>Nominal voltage (V)</th>
<th>Typical capacity (mAh)</th>
<th>Standard load (Ω)</th>
<th>Max. discharge current (continuous) (mA)</th>
<th>Max. discharge current (pulse) (mA)</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 1/3 N</td>
<td>6131 101 501</td>
<td>3</td>
<td>170</td>
<td>5.6</td>
<td>20</td>
<td>80</td>
<td>3.0</td>
</tr>
<tr>
<td>CR 1216</td>
<td>6216 101 501</td>
<td>3</td>
<td>27</td>
<td>39</td>
<td>2</td>
<td>5</td>
<td>0.7</td>
</tr>
<tr>
<td>CR 1220</td>
<td>6220 101 501</td>
<td>3</td>
<td>35</td>
<td>39</td>
<td>2</td>
<td>5</td>
<td>0.8</td>
</tr>
<tr>
<td>CR 1616</td>
<td>6616 101 501</td>
<td>3</td>
<td>55</td>
<td>39</td>
<td>3</td>
<td>8</td>
<td>1.2</td>
</tr>
<tr>
<td>CR 1620</td>
<td>6620 101 501</td>
<td>3</td>
<td>70</td>
<td>20</td>
<td>3</td>
<td>8</td>
<td>1.2</td>
</tr>
<tr>
<td>CR 2016</td>
<td>6016 101 501</td>
<td>3</td>
<td>90</td>
<td>15</td>
<td>3</td>
<td>10</td>
<td>1.8</td>
</tr>
<tr>
<td>CR 2025</td>
<td>6025 101 501</td>
<td>3</td>
<td>165</td>
<td>10</td>
<td>3</td>
<td>10</td>
<td>2.5</td>
</tr>
<tr>
<td>CR 2032</td>
<td>6032 101 501</td>
<td>3</td>
<td>230</td>
<td>5.6</td>
<td>3</td>
<td>10</td>
<td>3.0</td>
</tr>
<tr>
<td>CR 2430</td>
<td>6430 101 501</td>
<td>3</td>
<td>300</td>
<td>5.6</td>
<td>3</td>
<td>20</td>
<td>4.0</td>
</tr>
<tr>
<td>CR 2450</td>
<td>6450 101 501</td>
<td>3</td>
<td>620</td>
<td>5.6</td>
<td>2</td>
<td>20</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Technical data, CR Primary Lithium Button Cells

1) Nominal capacity is determined to an end voltage of 2.0 V when the battery is allowed to discharge at standard load level at 20°C
CR 1/3 N

Type Number 6131
Designation IEC CR 11108
System Li-Manganese dioxide/
 Organic Electrolyte

UL Recognition MH 13654
Nominal Voltage 3 V
Typical Capacity C 170 mA (Load 5.6 kOhm,
at 20°C down to 2 V)

Weight (approx.) 3 g
Volume 1,1 ccm
Coding TBA

Temperature Ranges min. max.
Storage -55°C 70°C
Discharge -20°C 65°C¹

Dimensions min. max.
Diameter (A) 11,40 11,60
Height (B) 10,40 10,80
Shoulder Diameter [L] ... 7,60 8,00
Shoulder Height [M] ... 0,40

Typical Capacities (at 20°C)

<table>
<thead>
<tr>
<th>Discharge Type</th>
<th>Load</th>
<th>End Voltage: 2.0 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>5600 Ω</td>
<td>Time: 335 h</td>
</tr>
<tr>
<td>24 h/d, 7 d/w</td>
<td></td>
<td>Capacity: 170 mA</td>
</tr>
<tr>
<td>Current [μA]</td>
<td></td>
<td>Energy: 475 mWh</td>
</tr>
</tbody>
</table>

Performance Data

Temperature Characteristics

Operating Voltage vs. load resistance

Capacity vs. load resistance

• Self-discharge rate < 1% at room temperature
• Storage life > 10 years
• Operating life² > 10 years

¹ Contact VARTA if the application is intended to be outside the range of -20°C to +65°C.
² depending on environmental condition and energy consumption
CR 1216

Type Number 6216
Designation IEC CR 1216
System Li-Manganese dioxide /
 Organic Electrolyte

UL Recognition MH 13654 (N)
Nominal Voltage 3 V
Typical Capacity C 27 mAh (Load 39 kOhm,
at 20°C down to 2 V)

Weight (approx.) 0,7 g
Volume 0,17 ccm
Coding Date of Manufacturing
 Month/Year

Temperature Ranges min. max.
Storage -55°C 70°C
Discharge -20°C 70°C¹

Dimensions min. max.
Diameter (A) 12,20 12,50
Height (B) 1,40 1,60
Shoulder Diameter [E] 10,00
Shoulder Height [C] 0,20

Typical Capacities (at 20°C)

<table>
<thead>
<tr>
<th>Discharge Type</th>
<th>Load</th>
<th>End Voltage: 2,0 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>39000 Ω</td>
<td></td>
</tr>
<tr>
<td>24 h/d, 7 d/w</td>
<td>Current (μA)</td>
<td></td>
</tr>
<tr>
<td>Time: 355 h</td>
<td>Capacity: 27 mAh</td>
<td></td>
</tr>
<tr>
<td>Energy: 77 mWh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Performance Data

Temperature Characteristics

Operating Voltage vs. load resistance*

Capacity vs. load resistance

Discharge Characteristics

- Self-discharge rate < 1% at room temperature
- Storage life > 10 years
- Operating life² > 10 years

¹ Contact VARTA if the application is intended to be outside the range of -20°C to +70°C.
² depending on environmental condition and energy consumption
CR 1220

Type Number 6220
Designation IEC CR 1220
System Li-Manganese dioxide/
 Organic Electrolyte

UL Recognition MH 13654 (N)
Nominal Voltage 3 V
Typical Capacity C 35 mAh (Load 39 kOhm,
 at 20°C down to 2 V)

Weight (approx.) 0,8 g
Volume 0,2 ccm
Coding Date of Manufacturing
 Month/Year

Temperature Ranges min. max.
Storage -55°C 70°C
Discharge -20°C 70°C¹

Dimensions min. max.
Diameter (A) 12,20 12,50
Height (B) 1,80 2,00
Shoulder Diameter [E] 10,00
Shoulder Height [C] 0,30

Typical Capacities (at 20°C)

<table>
<thead>
<tr>
<th>Discharge Type</th>
<th>Load</th>
<th>End Voltage: 2,0 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>39000 Ω</td>
<td></td>
</tr>
<tr>
<td>24 h/d, 7 d/w</td>
<td>39000 Ω</td>
<td>480 h</td>
</tr>
<tr>
<td>Current (μA)</td>
<td></td>
<td>Capacity: 36 mAh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy: 100 mWh</td>
</tr>
</tbody>
</table>

Performance Data

Temperature Characteristics

Operating Voltage vs. load resistance*

Capacity vs. load resistance

Discharge Characteristics

- Self-discharge rate < 1% at room temperature
- Storage life > 10 years
- Operating life² > 10 years

¹ Contact VARTA if the application is intended to be outside the
 range of -20°C to +70°C.
² depending on environmental condition and energy consumption
Primary Lithium Cells

CR 1616

Type Number 6616
Designation IEC CR 1616
System Li-Manganese dioxide / Organic Electrolyte
UL Recognition MH 13654 (N)
Nominal Voltage 3 V
Typical Capacity C 55 mAh (Load 39 kOhm, at 20°C down to 2 V)
Weight (approx.) 1,2 g
Volume 0,3 ccm
Coding Date of Manufacturing Month/Year

Temperature Ranges min. max.
Storage -55°C 70°C
Discharge -20°C 70°C¹

Dimensions min. max.
Diameter (A) 15,70 16,00
Height (B) 1,40 1,60
Shoulder Diameter [E] 12,00
Shoulder Height [C] 0,20

Typical Capacities (at 20°C)

<table>
<thead>
<tr>
<th>Discharge Type</th>
<th>Load</th>
<th>End Voltage: 2,0 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous 24 h/d, 7 d/w Current [μA]</td>
<td>39000 Ω</td>
<td>Time: 670 h, Capacity: 50 mAh, Energy: 142 mWh</td>
</tr>
</tbody>
</table>

Performance Data

• Self-discharge rate < 1% at room temperature
• Storage life > 10 years
• Operating life² > 10 years

¹ Contact VARTA if the application is intended to be outside the range of -20°C to +70°C.
² depending on environmental condition and energy consumption
CR 1620

Type Number 6620
Designation IEC CR 1620
System Li-Manganese dioxide / Organic Electrolyte

UL Recognition MH 13654 (N)
Nominal Voltage 3 V
Typical Capacity C 70 mAh (Load 20 kOhm, at 20°C down to 2 V)

Weight (approx.) 1.2 g
Volume 0.4 ccm
Coding Date of Manufacturing
Month/Year

Temperature Ranges
Storage -55°C 70°C
Discharge -20°C 70°C¹

Dimensions
Diameter (A) 15.70 16.00
Height (B) 1.80 2.00
Shoulder Diameter [E] 12.90
Shoulder Height [C] 0.20

Typical Capacities (at 20°C)

<table>
<thead>
<tr>
<th>Discharge Type</th>
<th>Load</th>
<th>End Voltage: 2.0 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous 24 h/d, 7 d/w Current (μA)</td>
<td>20000 Ω</td>
<td>Time: 500 h Capacity: 70 mAh Energy: 200 mWh</td>
</tr>
</tbody>
</table>

Performance Data

Temperature Characteristics

- Discharge Load 30 kΩ

Operating Voltage vs. load resistance

- Discharge depth 40%

Capacity vs. load resistance

- 2.0 V cut off

Discharge Characteristics

- Temperature 23°C

- Self-discharge rate < 1% at room temperature
- Storage life > 10 years
- Operating life ≥ 10 years

¹ Contact VARTA if the application is intended to be outside the range of -20°C to +70°C.
² Depending on environmental condition and energy consumption
CR 2016

Type Number 6016
Designation IEC CR 2016
System Li-Manganese dioxide /
 Organic Electrolyte
UL Recognition MH 13654 (N)
Nominal Voltage 3 V
Typical Capacity C 90 mAh (Load 15 kOhm,
 at 20°C down to 2 V)
Weight (approx.) 1.8 g
Volume 0.5 ccm
Coding Date of Manufacturing
 Month/Year

Temperature Ranges min. max.
Storage -55°C 70°C
Discharge -20°C 70°C¹

Dimensions min. max.
Diameter (A) 19.70 20.00
Height (B) 1.40 1.60
Shoulder Diameter [E] 18.40
Shoulder Height [C] 0.10

Typical Capacities (at 20°C)

<table>
<thead>
<tr>
<th>Discharge Type</th>
<th>Load</th>
<th>End Voltage: 2.0 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>15000 Ω</td>
<td>Time: 450 h Capacity: 90 mAh Energy: 270 mWh</td>
</tr>
<tr>
<td>24 h/d, 7 d/w</td>
<td>200 μA</td>
<td></td>
</tr>
</tbody>
</table>

Performance Data

Temperature Characteristics

Operating Voltage vs. load resistance

Capacity vs. load resistance*

*Voltage at 50% discharge depth

1 Contact VARTA if the application is intended to be outside the range of -20°C to +70°C.
2 depending on environmental condition and energy consumption

- Self-discharge rate < 1% at room temperature
- Storage life > 10 years
- Operating life² > 10 years
Type Number 6025
Designation IEC CR 2025
System Li-Manganese dioxide / Organic Electrolyte
UL Recognition MH 13654 (N)
Nominal Voltage 3 V
Typical Capacity C 165 mAh (Load 10 kOhm, at 20°C down to 2 V)
Weight (approx.) 2.5 g
Volume 0.75 ccm
Coding Date of Manufacturing Month/Year

Temperature Ranges
Storage -55°C 70°C¹
Discharge -20°C 70°C¹

Dimensions
Diameter (A) 19.70 20.00
Height (B) 2.20 2.50
Shoulder Diameter [E] .. 18.30
Shoulder Height [C] 0.20

Typical Capacities (at 20°C)
<table>
<thead>
<tr>
<th>Discharge Type</th>
<th>Load (μA)</th>
<th>End Voltage: 2.0 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>24 h/d, 7 d/w</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Performance Data

- Self-discharge rate < 1% at room temperature
- Storage life > 10 years
- Operating life² > 10 years

¹ Contact VARTA if the application is intended to be outside the range of -20°C to +70°C.
² depending on environmental condition and energy consumption
CR 2032

Type Number 6032
Designation IEC CR 2032
System Li-Manganese dioxide/
Organic Electrolyte

UL Recognition MH 13654 (N)
Nominal Voltage 3 V
Typical Capacity C 230 mAh (Load 5.6 kOhm,
at 20°C down to 2 V)

Weight (approx.) 3 g
Volume 0.95 ccm
Coding Date of Manufacturing
Month/Year

Temperature Ranges min. max.
Storage -55°C 70°C
Discharge -20°C 70°C¹

Dimensions min. max.
Diameter (A) 19,70 20,00
Height (B) 2,90 3,20
Shoulder Diameter [E] 16,00

Typical Capacities (at 20°C)

<table>
<thead>
<tr>
<th>Discharge Type</th>
<th>Load</th>
<th>End Voltage: 2.0 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>5600 Ω</td>
<td></td>
</tr>
</tbody>
</table>

Current [μA] | Time: | Capacity: | Energy: |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>460 h</td>
<td>230 mAh</td>
<td>645 mWh</td>
</tr>
</tbody>
</table>

Performance Data

Voltage vs. load resistance

Temperature Characteristics

Operating Voltage vs. load resistance

Capacity vs. load resistance*

- Self-discharge rate < 1% at room temperature
- Storage life > 10 years
- Operating life² > 10 years

¹ Contact VARTA if the application is intended to be outside the
range of -20°C to +70°C.
² depending on environmental condition and energy consumption
CR 2430

Type Number 6430
Designation IEC CR 2430
System Li-Manganese dioxide/ Organic Electrolyte

UL Recognition MH 13654 (N)
Nominal Voltage 3 V
Typical Capacity C 300 mAh (Load 5,6 kOhm, at 20°C down to 2 V)

Weight (approx.) 4 g
Volume 1,3 ccm
Coding Date of Manufacturing
 Month/Year

Temperature Ranges
Storage -55°C 70°C
Discharge -20°C 70°C¹

Dimensions
Diameter (A) 24,20 24,50
Height (B) 2,70 3,00
Shoulder Diameter [E] 16,30 16,70

Typical Capacities (at 20°C)

<table>
<thead>
<tr>
<th>Discharge Type</th>
<th>Load [Ω]</th>
<th>Time [h]</th>
<th>Capacity [mAh]</th>
<th>Energy [mWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>5600</td>
<td>600</td>
<td>300</td>
<td>840</td>
</tr>
</tbody>
</table>

Performance Data

- Self-discharge rate < 1% at room temperature
- Storage life > 10 years
- Operating life² > 10 years

¹ Contact VARTA if the application is intended to be outside the range of -20°C to +70°C.
² depending on environmental condition and energy consumption
CR 2450

Type Number 6450
Designation IEC CR 2450
System .. Li-Manganese dioxide/ Organic Electrolyte

UL Recognition MH 13654 (N)
Nominal Voltage 3 V
Typical Capacity C 620 mAh (Load 5,6 kOhm at 20°C down to 2 V)

Weight (approx.) 6,2 g
Volume 2,3 ccm
Coding Date of Manufacturing Month/Year

Temperature Ranges
- **Storage** -55°C 70°C
- **Discharge** -20°C 70°C¹

Dimensions
- **Diameter (A)** 24,20 24,70
- **Height (B)** 4,60 5,00
- **Shoulder Diameter [E]** 21,00

Typical Capacities (at 20°C)

<table>
<thead>
<tr>
<th>Discharge Type</th>
<th>Load</th>
<th>End Voltage: 2,0 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous 24 h/d, 7 d/w</td>
<td>5600 Ω</td>
<td>Time: 1250 h Capacity: 620 mAh Energy: 1730 mWh</td>
</tr>
</tbody>
</table>

Performance Data

- **Self-discharge rate < 1% at room temperature**
- **Storage life > 10 years**
- **Operating life² > 10 years**

¹ Contact VARTA if the application is intended to be outside the range of -20°C to +70°C.
² depending on environmental condition and energy consumption
2.2 ASSEMBLIES

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>K</th>
<th>L</th>
<th>Fig. No.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 1/3 N</td>
<td>6131 101 501</td>
<td>11.6</td>
<td>10.8</td>
<td>0.4</td>
<td>–</td>
<td>7.8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>CR 1/3 N PC PCBD</td>
<td>6131 201 501</td>
<td>13.0</td>
<td>1.0</td>
<td>10.0</td>
<td>1.0 ±0.3</td>
<td>11.5 ±0.5</td>
<td>12.0 ±0.15</td>
<td>–</td>
<td>1.0 ±0.3</td>
<td>3.0</td>
<td>–</td>
<td>–</td>
<td>3 tag 0.25 mm</td>
</tr>
<tr>
<td>CR 1/3 N BE STO</td>
<td>6131 301 501</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>11.5</td>
<td>12.0</td>
<td>–</td>
<td>–</td>
<td>19.0</td>
<td>4.0</td>
<td>2</td>
<td>tag 0.25 mm 180°</td>
</tr>
</tbody>
</table>

Tag material: nickel plated sheet-steel. SLF: tip tinned.
Custom made assemblies are available on request for large volume.

FIG. 1

FIG. 2 LF

FIG. 3 SLF
CR Button

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>K</th>
<th>L</th>
<th>Fig. No.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 1216</td>
<td>6216 101 501</td>
<td>12.5</td>
<td>1.6</td>
<td>0.2</td>
<td>--</td>
<td>10.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>CR 1220</td>
<td>6220 101 501</td>
<td>12.5</td>
<td>2.0</td>
<td>0.3</td>
<td>--</td>
<td>10.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>CR 1616</td>
<td>6616 101 501</td>
<td>16.0</td>
<td>1.6</td>
<td>0.2</td>
<td>--</td>
<td>12.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>CR 1620</td>
<td>6620 101 501</td>
<td>16.0</td>
<td>2.0</td>
<td>0.02</td>
<td>--</td>
<td>12.9</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>CR 2016</td>
<td>6016 101 501</td>
<td>20.0</td>
<td>1.6</td>
<td>0.1</td>
<td>--</td>
<td>10.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>CR 2016 SC PCBD</td>
<td>6016 201 501</td>
<td>21.3</td>
<td>1.0</td>
<td>10.0 ±0.15</td>
<td>1.0 ±0.3</td>
<td>2.1 ±0.5</td>
<td>20.3 ±0.15</td>
<td>--</td>
<td>1.0 ±0.3</td>
<td>4.5</td>
<td>--</td>
<td>5</td>
<td>tag 0.25 mm</td>
</tr>
<tr>
<td>CR 2016 SC STO</td>
<td>6016 301 501</td>
<td>20.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1.9</td>
<td>20.0</td>
<td>--</td>
<td>--</td>
<td>10.0</td>
<td>4.0</td>
<td>6</td>
<td>tag 0.15 mm</td>
</tr>
<tr>
<td>CR 2016 BE PCBD</td>
<td>6016 401 501</td>
<td>20.0</td>
<td>1.0</td>
<td>10.0</td>
<td>9.1</td>
<td>1.6</td>
<td>17.8</td>
<td>7.3</td>
<td>10.0</td>
<td>4.5</td>
<td>11.4</td>
<td>7</td>
<td>tag 0.15 mm</td>
</tr>
<tr>
<td>CR 2016 FM S STO</td>
<td>6016 301 012</td>
<td>20.5</td>
<td>3.5</td>
<td>1.8</td>
<td>3.0</td>
<td>2.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Tag material: nickel plated sheet-steel. SLF: tip tinned.
Custom made assemblies are available on request for large volume.
<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>K</th>
<th>L</th>
<th>Fig. No.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 2025</td>
<td>6025 101 501</td>
<td>20.0</td>
<td>2.5</td>
<td>0.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>CR 2025 ST</td>
<td>6025 201 501</td>
<td>21.3</td>
<td>1.0</td>
<td>10.0 ±0.2</td>
<td>10.0 ±0.3</td>
<td>3.0 ±0.5</td>
<td>20.3 ±0.15</td>
<td>–</td>
<td>1.0 ±0.3</td>
<td>4.5</td>
<td>–</td>
<td>–</td>
<td>9</td>
<td>tag 0.25 mm</td>
</tr>
<tr>
<td>CR 2025 SC STO</td>
<td>6025 301 501</td>
<td>20.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2.8</td>
<td>20.3</td>
<td>–</td>
<td>–</td>
<td>10.0</td>
<td>4.0</td>
<td>10</td>
<td>10</td>
<td>tag 0.15 mm</td>
</tr>
<tr>
<td>CR 2025 BE PCBD</td>
<td>6025 401 501</td>
<td>20.0</td>
<td>1.0</td>
<td>10.0</td>
<td>10.0</td>
<td>2.8</td>
<td>17.8</td>
<td>7.3</td>
<td>10.0</td>
<td>4.5</td>
<td>11.4</td>
<td>–</td>
<td>11</td>
<td>tag 0.15 mm</td>
</tr>
<tr>
<td>CR 2032</td>
<td>6032 101 501</td>
<td>20.0</td>
<td>3.2</td>
<td>0.02</td>
<td>–</td>
<td>16.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>CR 2032 SC PCBD</td>
<td>6032 201 501</td>
<td>21.5</td>
<td>1.0</td>
<td>10.0</td>
<td>10.0</td>
<td>4.2</td>
<td>20.3</td>
<td>–</td>
<td>1.0</td>
<td>4.5</td>
<td>–</td>
<td>–</td>
<td>9</td>
<td>tag 0.25 mm</td>
</tr>
<tr>
<td>CR 2032 SC STO</td>
<td>6032 301 501</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3.2</td>
<td>20.3</td>
<td>–</td>
<td>–</td>
<td>10.0</td>
<td>4.0</td>
<td>10</td>
<td>10</td>
<td>tag 0.15 mm</td>
</tr>
<tr>
<td>CR 2032 PCBD</td>
<td>6032 401 501</td>
<td>20.0</td>
<td>1.0</td>
<td>10.0</td>
<td>11.0</td>
<td>3.2</td>
<td>17.8</td>
<td>7.5</td>
<td>10.0</td>
<td>4.5</td>
<td>11.4</td>
<td>–</td>
<td>11</td>
<td>tag 0.25 mm</td>
</tr>
<tr>
<td>CR 2032 BE PCBS</td>
<td>6032 701 501</td>
<td>20.0</td>
<td>1.0</td>
<td>–</td>
<td>11.0</td>
<td>3.2</td>
<td>17.8</td>
<td>7.5</td>
<td>10.0</td>
<td>4.5</td>
<td>10.0</td>
<td>–</td>
<td>12</td>
<td>tag 0.20 mm</td>
</tr>
<tr>
<td>CR 2032 S WC1)</td>
<td>6032 101 013</td>
<td>20.7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5.5</td>
<td>30.0</td>
<td>–</td>
<td>–</td>
<td>96.0</td>
<td>2.0</td>
<td>13</td>
<td>13</td>
<td>tag 0.20 mm 2)</td>
</tr>
<tr>
<td>CR 2032 S STO</td>
<td>6032 101 012</td>
<td>20.0</td>
<td>7.0</td>
<td>2.8</td>
<td>5.0</td>
<td>3.8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Tag material: nickel plated sheet-steel. SLF: tip tinned.
1) using Molex 51021-03 connector (Other wire connectors and wire length are available on request.)
2) in shrink sleeve with wire and connector

Custom made assemblies are available on request for large volume.

FIG. 8

FIG. 9 SLF

FIG. 10 LF

FIG. 11 PCB3

FIG. 12 PCB 2

FIG. 13 WC

FIG. 14 SMT
CR Button

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>K</th>
<th>J</th>
<th>Fig No.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 2430</td>
<td>6430 101 501</td>
<td>24.5</td>
<td>3.0</td>
<td>0.3</td>
<td>–</td>
<td>–</td>
<td>20.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>15</td>
</tr>
<tr>
<td>CR 2430 SLF</td>
<td>6430 201 501</td>
<td>25.6</td>
<td>1.0</td>
<td>10.0</td>
<td>1.0</td>
<td>4.0</td>
<td>25.0</td>
<td>1.0</td>
<td>4.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>16 tag 0.25 mm</td>
</tr>
<tr>
<td>CR 2430 LF</td>
<td>6430 301 501</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3.2</td>
<td>25.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>10.0</td>
<td>4.0</td>
<td>17 tag 0.15 mm</td>
</tr>
<tr>
<td>CR 2430 PCB 3</td>
<td>6430 401 501</td>
<td>24.5</td>
<td>1.0</td>
<td>10.0</td>
<td>11.0</td>
<td>3.0</td>
<td>17.8</td>
<td>7.5</td>
<td>10.0</td>
<td>4.5</td>
<td>–</td>
<td>–</td>
<td>18 tag 0.25 mm</td>
</tr>
<tr>
<td>CR 2430 PCB 2</td>
<td>6430 701 501</td>
<td>24.5</td>
<td>1.0</td>
<td>–</td>
<td>11.0</td>
<td>3.0</td>
<td>20.0</td>
<td>7.5</td>
<td>10.0</td>
<td>4.5</td>
<td>11.4</td>
<td>–</td>
<td>19 tag 0.20 mm</td>
</tr>
<tr>
<td>CR 2430 SMT</td>
<td>6430 301 012</td>
<td>24.5</td>
<td>5.2</td>
<td>4.0</td>
<td>5.0</td>
<td>3.3</td>
<td>20.0</td>
<td>7.5</td>
<td>10.0</td>
<td>4.5</td>
<td>–</td>
<td>–</td>
<td>20</td>
</tr>
</tbody>
</table>

CR 2450	6450 101 501	24.7	5.0	0.5	–	21.8	–	–	–	–	–	–	15
CR 2450 SLF	6450 201 501	25.6	1.0	10.0	1.0	6.0	25.0	1.0	4.5	–	–	–	16 tag 0.25 mm
CR 2450 PCB 3	6450 401 501	24.5	1.0	10.0	13.2	5.0	17.8	7.5	10.0	4.5	11.4	–	18 tag 0.25 mm
CR 2450 PCB 2	6450 701 501	24.7	1.0	–	12.7	5.0	17.8	7.5	10.0	4.5	11.4	–	19 tag 0.20 mm
CR 2450 SMT	6450 301 013	24.5	4.5	2.8	3.5	5.3	–	–	–	–	–	20	

Tag material: nickel plated sheet-steel. SLF: tip tinned.

1) using Molex 51021-03 connector (Other wire connectors and wire length are available on request.)
2) in shrink sleeve with wire and connector

Custom made assemblies are available on request for large volume.
3. CR HIGH CAPACITY PRIMARY LITHIUM CYLINDRICAL CELLS
3.1 TYPES – TECHNICAL DATA

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>Nom. voltage (V)</th>
<th>Nominal capacity at 3.0 V, down to 2.0 V, load (mAh)</th>
<th>Max. continuous discharge current (mA)</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 1/2 AA</td>
<td>6127 101 301</td>
<td>3</td>
<td>950 mAh–5.6 kΩ</td>
<td>10</td>
<td>11.5</td>
</tr>
<tr>
<td>CR 2/3 AA</td>
<td>6237 101 301</td>
<td>3</td>
<td>1350 mAh–1.0 kΩ</td>
<td>15</td>
<td>15.0</td>
</tr>
<tr>
<td>CR AA</td>
<td>6117 101 301</td>
<td>3</td>
<td>2000 mAh–1.0 kΩ</td>
<td>20</td>
<td>21.5</td>
</tr>
</tbody>
</table>

Technical data, CR High Capacity Primary Lithium Cylindrical Cells
CR 1/2 AA

Type Number 6127
Designation IEC -
System Li-Manganese dioxide / Organic Electrolyte

UL Recognition MH 13654 (N)
Nominal Voltage 3 V
Typical Capacity C 950 mAh (Load 5.6 kOhm, at 20°C down to 2 V)

Weight (approx.) 11.5 g
Volume 5 ccm
Coding Date of Manufacturing Month/Year

Temperature Ranges min. max.
Storage -55°C 70°C
Discharge -30°C 75°C¹

Dimensions min. max.
Diameter (A) 14.15 14.45
Height (B) 25.09 25.30
Shoulder Diameter [L] 7.00
Shoulder Height [M] 0.90

Typical Capacities (at 20°C)

<table>
<thead>
<tr>
<th>Discharge Type</th>
<th>Load</th>
<th>End Voltage: 2.0 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous 24 h/d, 7 d/w</td>
<td>5600 Ω</td>
<td>Time: 1860 h, Capacity: 950 mAh, Energy: 2700 mWh</td>
</tr>
<tr>
<td>Continuous 24 h/d, 7 d/w</td>
<td>2000 Ω</td>
<td>Time: 670 h, Capacity: 930 mAh, Energy: 2600 mWh</td>
</tr>
<tr>
<td>Continuous 24 h/d, 7 d/w</td>
<td>1000 Ω</td>
<td>Time: 335 h, Capacity: 980 mAh, Energy: 2400 mWh</td>
</tr>
<tr>
<td>Constant current</td>
<td>50 μA</td>
<td>Capacity: 1000 mAh</td>
</tr>
</tbody>
</table>

¹ Contact VARTA if the application is intended to be outside the range of -30°C to +75°C.
² depending on environmental condition and energy consumption

Performance Data

Temperature Characteristics*

Capacity vs. load resistance

Discharge Characteristics*

● Self-discharge rate < 1% at room temperature
● Storage life > 10 years
● Operating life² > 10 years
CR 2/3 AA

Type Number 6237
Designation IEC -
System Li-Manganese dioxide/
 Organic Electrolyte
UL Recognition MH 13654 (N)
Nominal Voltage 3 V
Typical Capacity C 1350 mAh (Load 1,0 kOhm, at 20°C down to 2 V)

Weight (approx.) 15 g
Volume 5,6 ccm
Coding Date of Manufacturing
 Month/Year

Temperature Ranges min. max.
Storage -55°C 70°C
Discharge -30°C 75°C¹

Dimensions min. max.
Diameter (A) 14,45 14,75
Height (B) 33,10 33,00
Shoulder Diameter [L] 7,00
Shoulder Height [M] 0,60

Typical Capacities (at 20°C)

<table>
<thead>
<tr>
<th>Discharge Type</th>
<th>Load</th>
<th>End Voltage: 2,0 V</th>
</tr>
</thead>
</table>
| Continuous 24 h/d, 7 d/w | 1000 Ω | Time: 550 h
Capacity: 1350 mAh
Energy: 3600 mWh |

Performance Data

Temperature Characteristics*

Operating Voltage vs. load resistance*

Capacity vs. load resistance

Discharge Characteristics*

- Self-discharge rate < 1% at room temperature
- Storage life > 10 years
- Operating life² > 10 years

¹ Contact VARTA if the application is intended to be outside the range of -30°C to +75°C.
² depending on environmental condition and energy consumption
CR AA

Performance Data

Temperature Characteristics

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21°C</td>
<td>3.5</td>
</tr>
<tr>
<td>60°C</td>
<td>3.0</td>
</tr>
</tbody>
</table>

*Discharge Load 5.6 kΩ

Operating Voltage vs. load resistance

<table>
<thead>
<tr>
<th>Load (kΩ)</th>
<th>Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>3.5</td>
</tr>
<tr>
<td>1.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

*Discharge depth 50%

Capacity vs. load resistance

<table>
<thead>
<tr>
<th>Load (kΩ)</th>
<th>Capacity (mAh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2000</td>
</tr>
<tr>
<td>1.0</td>
<td>1850</td>
</tr>
</tbody>
</table>

Discharge Characteristics

- Self-discharge rate < 1% at room temperature
- Storage life > 10 years
- Operating life > 10 years

Specifications

- **Type Number**: 6117
- **Designation IEC**: -
- **System**: Li-Manganese dioxide/ Organic Electrolyte
- **UL Recognition**: MH 13654 (N)
- **Nominal Voltage**: 3 V
- **Typical Capacity C**: 2000 mAh (Load 1,0 kOhm, at 20°C down to 2 V)

- **Weight (approx.)**: 21.5 g
- **Volume**: 8.5 ccm
- **Coding**: Date of Manufacturing Month/Year

Temperature Ranges

- **Storage**: -55°C to 70°C
- **Discharge**: -30°C to 75°C

Dimensions

- **Diameter (A)**: 14.45 - 14.75
- **Height (B)**: 49.50 - 50.50
- **Shoulder Diameter [L]**: 7.00
- **Shoulder Height [M]**: 0.60

Typical Capacities (at 20°C)

<table>
<thead>
<tr>
<th>Discharge Type</th>
<th>Load</th>
<th>End Voltage: 2.0 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>1000Ω</td>
<td>Time: 745 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capacity: 2000 mAh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy: 8600 mWh</td>
</tr>
<tr>
<td>Continuous</td>
<td>620Ω</td>
<td>Time: 430 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capacity: 1850 mAh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy: 5000 mWh</td>
</tr>
</tbody>
</table>

Notes

1. Contact VARTA if the application is intended to be outside the range of -30°C to +75°C.
2. Depending on environmental condition and energy consumption.
3.2 ASSEMBLIES

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>A (Max.)</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>Fig No.</th>
<th>Tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 1/2 AA S</td>
<td>6127 101 301</td>
<td>14.75</td>
<td>25.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>7.0</td>
<td>0.6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR 1/2 AA S PCBD</td>
<td>6127 201 301</td>
<td>14.75</td>
<td>25.2</td>
<td>10.0</td>
<td>1.0</td>
<td>1.0</td>
<td>–</td>
<td>25.4</td>
<td>–</td>
<td>3.0</td>
<td>5.0</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CR 1/2 AA S ST</td>
<td>6127 301 301</td>
<td>14.75</td>
<td>25.2</td>
<td>10.0</td>
<td>–</td>
<td>3.5</td>
<td>2.1</td>
<td>25.4</td>
<td>2.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CR 1/2 AA BE CD</td>
<td>6127 501 301</td>
<td>14.75</td>
<td>25.4</td>
<td>45.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CR 1/2 AA S CD</td>
<td>6127 601 301</td>
<td>14.75</td>
<td>25.4</td>
<td>–</td>
<td>7.5</td>
<td>–</td>
<td>–</td>
<td>33.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>6 (90°)</td>
<td></td>
</tr>
<tr>
<td>CR 1/2 AA S PCB</td>
<td>6127 901 301</td>
<td>14.75</td>
<td>25.2</td>
<td>–</td>
<td>–</td>
<td>1.0</td>
<td>–</td>
<td>25.4</td>
<td>–</td>
<td>–</td>
<td>3.0</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>short pin</td>
</tr>
<tr>
<td>CR 1/2 AA S TP</td>
<td>6127 601 381</td>
<td>14.75</td>
<td>25.2</td>
<td>16.5</td>
<td>–</td>
<td>0.64</td>
<td>–</td>
<td>25.8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>8</td>
<td>terminal pin</td>
</tr>
<tr>
<td>CR 1/2 AA WC 1</td>
<td>6127 201 390</td>
<td>17.5</td>
<td>27.0</td>
<td>50.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>9</td>
<td>wire & connector</td>
<td></td>
</tr>
<tr>
<td>CR 2/3 AA S</td>
<td>6237 101 301</td>
<td>14.75</td>
<td>33.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>7.0</td>
<td>0.6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR 2/3 AA S PCBD</td>
<td>6237 201 301</td>
<td>14.75</td>
<td>33.5</td>
<td>10.0</td>
<td>1.0</td>
<td>1.0</td>
<td>–</td>
<td>33.7</td>
<td>–</td>
<td>3.0</td>
<td>5.0</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CR 2/3 AA S ST</td>
<td>6237 301 301</td>
<td>14.75</td>
<td>33.5</td>
<td>10.0</td>
<td>–</td>
<td>3.5</td>
<td>2.1</td>
<td>33.7</td>
<td>2.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CR 2/3 AA S CD</td>
<td>6237 501 301</td>
<td>14.75</td>
<td>33.5</td>
<td>45.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CR 2/3 AA S PCB</td>
<td>6237 701 301</td>
<td>14.75</td>
<td>33.5</td>
<td>–</td>
<td>1.0</td>
<td>1.0</td>
<td>–</td>
<td>33.7</td>
<td>–</td>
<td>3.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>4</td>
<td>single pin</td>
</tr>
<tr>
<td>CR AA S</td>
<td>6117 101 301</td>
<td>14.75</td>
<td>50.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>7.0</td>
<td>0.6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR AA S PCBD</td>
<td>6117 201 301</td>
<td>14.75</td>
<td>50.0</td>
<td>10.0</td>
<td>1.0</td>
<td>1.0</td>
<td>–</td>
<td>50.2</td>
<td>–</td>
<td>3.0</td>
<td>5.0</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CR AA S ST</td>
<td>6117 301 301</td>
<td>14.75</td>
<td>50.0</td>
<td>10.0</td>
<td>–</td>
<td>3.5</td>
<td>2.1</td>
<td>50.2</td>
<td>2.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CR AA S CD</td>
<td>6117 501 301</td>
<td>14.75</td>
<td>50.2</td>
<td>45.0</td>
<td>–</td>
<td>3.5</td>
<td>–</td>
<td>50.2</td>
<td>2.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CR AA S PCB</td>
<td>6117 701 301</td>
<td>14.75</td>
<td>50.0</td>
<td>–</td>
<td>1.0</td>
<td>1.0</td>
<td>–</td>
<td>50.2</td>
<td>–</td>
<td>3.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>4</td>
<td>single pin</td>
</tr>
<tr>
<td>CR AA S WC 1</td>
<td>6117 201 391</td>
<td>18</td>
<td>51.0</td>
<td>50.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>9</td>
<td>wire & connector</td>
<td></td>
</tr>
</tbody>
</table>

Material: nickel plated sheet-steel, tag thickness: 0.15 mm till 0.25 mm. SLF: tip tinned, all types in green shrink sleeve.

1) using connector: JST type: PHR2 (Other connector types available on request.)

Custom made assemblies are available on request for large volume.
Primary Lithium Cells
4. CR HIGH POWER PRIMARY LITHIUM CYLINDRICAL CELLS
4.1 TYPES – TECHNICAL DATA

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>Nominal Voltage (V)</th>
<th>Nominal capacity at 20°C, load (mAh)</th>
<th>Max. continuous discharge current 1) (mA)</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 2/3 AH</td>
<td>6215 101 501</td>
<td>3</td>
<td>1500 mAh–200 Ω</td>
<td>1500</td>
<td>16</td>
</tr>
<tr>
<td>CR 123 A</td>
<td>6205 210 501</td>
<td>3</td>
<td>1500 mAh–200 Ω/2.0 V</td>
<td>1400</td>
<td>17</td>
</tr>
<tr>
<td>CR 2</td>
<td>6208 210 501</td>
<td>3</td>
<td>850 mAh–200 Ω/1.8 V</td>
<td>885</td>
<td>11</td>
</tr>
</tbody>
</table>

Technical data, CR High Power Primary Lithium Cylindrical Cells

1) Current value for obtaining 50% capacity
2) in blister card (1 pc)
CR 2/3 AH

Type Number 6215
Designation IEC CR 17345
System Li-Manganese dioxide/ Organic Electrolyte

UL Recognition MH 13654 (N)
Nominal Voltage 3 V
Typical Capacity C 1500 mAh (Load 200 kOhm, at 20°C down to 2 V)

Weight (approx.) 17 g
Volume 7 ccm
Coding Date of Manufacturing Month/Year

Temperature Ranges min. max.
Storage -20°C 45°C
Discharge -40°C 70°C¹

Dimensions min. max.
Diameter (A) 16,00 17,00
Height (B) 32,40 33,90
Shoulder Diameter [L] 6,10
Shoulder Height [M] 1,00

Typical Capacities (at 20°C)

<table>
<thead>
<tr>
<th>Discharge Type</th>
<th>Load</th>
<th>End Voltage: 2,0 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous 24 h/d, 7 d/w</td>
<td>200 Ω</td>
<td>Time: 108 h</td>
</tr>
</tbody>
</table>

Performance Data

Temperature Characteristics*

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Voltage [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>20°C</td>
<td>3,0</td>
</tr>
<tr>
<td>60°C</td>
<td>2,5</td>
</tr>
<tr>
<td>2°C</td>
<td>1,5</td>
</tr>
</tbody>
</table>

*Discharge Load 5,6 kΩ

Pulse discharge characteristics*

Cycle Number [1] (cycle)

<table>
<thead>
<tr>
<th>Cycle Number</th>
<th>Voltage [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3,0</td>
</tr>
<tr>
<td>1000</td>
<td>2,5</td>
</tr>
<tr>
<td>2000</td>
<td>2,0</td>
</tr>
</tbody>
</table>

*Load: cont. 560 Ω, Pulse load: 2 sec/min 3Ω (parallel)

Typical discharge curve*

<table>
<thead>
<tr>
<th>Time [h]</th>
<th>Voltage [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3,0</td>
</tr>
<tr>
<td>1000</td>
<td>2,5</td>
</tr>
<tr>
<td>2000</td>
<td>2,0</td>
</tr>
</tbody>
</table>

*Load: 0.9A, 3 sec on, 27 sec off 2) after storage at 60°C/100 days

Discharge Characteristics*

<table>
<thead>
<tr>
<th>Time [h]</th>
<th>Voltage [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3,0</td>
</tr>
<tr>
<td>10</td>
<td>2,5</td>
</tr>
<tr>
<td>20</td>
<td>2,0</td>
</tr>
</tbody>
</table>

*at room temperature 21°C

- Self-discharge rate < 1% at room temperature
- Storage life > 10 years
- Operating life² > 10 years

¹ Contact VARTA if the application is intended to be outside the range of -40°C to +70°C.
² depending on environmental condition and energy consumption
Type Number 6206
Designation IEC CR 15H270
System Li-Manganese dioxide / Organic Electrolyte

UL Recognition MH 13654 (N)
Nominal Voltage 3 V
Typical Capacity C 870 mAh (Load 200 kOhm, at 20°C down to 2 V)

Weight (approx.) 11 g
Volume 5,2 ccm
Coding TBA

Temperature Ranges
Storage -20°C 45°C
Discharge -40°C 70°C¹

Dimensions
Diameter (A) 15,10 15,60
Height (B) 26,30 27,00
Shoulder Diameter [L] 6,20 6,30
Shoulder Height [M] 0,70 1,30

Typical Capacities (at 20°C)

<table>
<thead>
<tr>
<th>Discharge Type</th>
<th>Load</th>
<th>Discharge Characteristics*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>200 Ω</td>
<td>Time: 63 h</td>
</tr>
<tr>
<td>24 h/d, 7 d/w</td>
<td></td>
<td>Capacity: 870 mAh</td>
</tr>
</tbody>
</table>

Performance Data

Self-discharge rate < 1% at room temperature
Storage life > 10 years
Operating life² > 10 years
CR 123 A

Performance Data

Temperature Characteristics

*Discharge Load 5.6 kΩ

Pulse discharge characteristics

*1) Load: 0.9A, 3 sec on. 27 sec. off 2) after storage at 60°C/100 days

Typical discharge curve

*Load: cont. 560 Ω, Pulse load: 2,sec/min 3Ω (parallel)

Discharge Characteristics

* at room temperature 21°C

- Self-discharge rate < 1% at room temperature
- Storage life > 10 years
- Operating life ² > 10 years

Type Number 6205
Designation IEC CR 17345
System Li-Manganese dioxide/ Organic Electrolyte

UL Recognition MH 13654 (N)
Nominal Voltage 3 V
Typical Capacity C 1550 mAh (Load 100 kOhm, at 20°C down to 2 V)

Weight (approx.) 17 g
Volume 7 ccm
Coding Date of Manufacturing Month/Year

Temperature Ranges

- Storage -20°C 45°C
- Discharge -40°C 70°C¹

Dimensions

- Diameter (A) 16,40 17,00
- Height (B) 34,30 34,50
- Shoulder Diameter [L] 6,20 6,40
- Shoulder Height [M] 1,18 1,23

Typical Capacities (at 20°C)

<table>
<thead>
<tr>
<th>Discharge Type</th>
<th>Load</th>
<th>End Voltage: 2.0 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous 24 h/d, 7 d/w</td>
<td>100 Ω</td>
<td>Capacity: 1550 mAh</td>
</tr>
</tbody>
</table>

¹ Contact VARTA if the application is intended to be outside the range of -40°C to +70°C.
² depending on environmental condition and energy consumption
4.2 ASSEMBLIES

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>Fig No.</th>
<th>Tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 2/3 AH S</td>
<td>6215 101 501</td>
<td>17.0</td>
<td>-1</td>
<td>33.9</td>
<td>-1.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.3 ±0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>CR 2/3 AH S PCBD</td>
<td>6215 201 013</td>
<td>16.5</td>
<td>1</td>
<td>33.3</td>
<td>10.0</td>
<td>1.0</td>
<td>-</td>
<td>33.7</td>
<td>-3.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>CR 123A P1</td>
<td>6205 210 501</td>
<td>17.0</td>
<td>-1</td>
<td>34.5</td>
<td>-0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.4 ±1.2</td>
<td>1.29</td>
</tr>
<tr>
<td>CR 2 P1</td>
<td>6206 210 501</td>
<td>17.0</td>
<td>-1</td>
<td>34.5</td>
<td>-0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.5 ±0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Material: nickel plated sheet-steel, tag thickness: 0.15 mm till 0.25 m. SLF: tip tinned.
Custom made assemblies are available on request for large volume.

![FIG. 1](image1.png)

![FIG. 2](image2.png)
5. GENERAL DESIGN CHARACTERISTICS

Basically, VARTA lithium batteries are safely designed to endure various environmental conditions. The design of the hermetically seal rim and the glass-to-metal welding can give the battery high endurance in various environmental conditions such as variant temperatures, humidity and vibration. Also, the position of lithium against the inner wall of the cell case makes heat dissipated to the outside easier when inside heat is generated. Therefore, there is no concern over safety when the suggested cautions are followed during usage, handling or storage.

However, there might be some possibilities of mishandling or misuse by the customer. Thus, following simulation tests have been performed. The test conditions are based on the procedures of the UL standard tests and Military Standards for environmental and safety testing. The abnormal test is only carried out to check the behavior of the batteries under misuse conditions and make certain the batteries react in a safe manor.
Battery Selection:

In order to ensure optimum battery performance for the primary CR Button, the cylindrical CR High Power and cylindrical High Capacity cells, we suggest consideration of the following design-in requirements. They are the nominal and operating voltage, load current and profile, the duty cycle, temperature requirements and shelf life for the application. These characteristics for each battery type must be evaluated against the design requirements to select the most appropriate product that fulfills these requirements.

Design-in Considerations

VARTA Microbattery Primary Lithium Batteries offer lightweight packaged power for a variety of portable electric and electronic equipment. They are suitable as a main or standby power source for memory (RAM) and Real-Time clock (RTC) applications.

The Lithium Batteries are blocked from the power supply by means of a diode to prevent discharge of the battery into the DC supply during shut down.

The voltage drop across D1 should be taken into account as the minimum voltage of the load that has to be maintained under all circumstances.

Blocking diode D2 and D3 prevents the battery from being charged through the power supply. The amount of accumulated reverse current (IR) should be kept around 1% of the cell's typical capacity during its standby life time. The leakage current of the diodes has to be considered.

Example:
- CR 1/2 AA for 5 years life time
- 1% of 950 mAh = 9,5 mAh = 9500 µAh
- 5 years = 43800 h
- max. reserve current = 9500 µAh/ 43800 h = 0,217 µAh

However a maximum of 5µA continuously must not be exceeded. In the absence of a DC supply voltage, the lithium battery supplies the load with the necessary power.

As diodes fail at low current levels by an alloy-effect causing a severe reduction in impedance, an additional safety device must be incorporated.

Using 2 cells when 6 V is used in series
All VARTA Microbattery Lithium Cells and Batteries listed in Table below are recognized by Underwriters Laboratories Inc. under UL-file number MH 13654 (N).

The cells are marked with the Recognized Component Mark.

Underwriters Laboratories requires for lithium cells/batteries a circuit, which must contain a protective component to **prevent charging**. In case of diode failure a current limiting resistor must be chosen according to the values listed in Table below, which are the maximum safe reserve currents according UL 1642 Test in order to prevent fire or explosion. (These are not the maximum continuous reserve currents in a regular use. Refer to Design-in considerations in Section 5.)

For safety tests of the cells, “UL” requires either an additional diode, or a resistor, limiting the current to a safe level of 4 mA (for all cylindrical CR…A(A) lithium mass cells).

It should be noted that the value of the resistor has to be calculated using the higher power supply voltage – not the battery voltage.

The supply voltage to the load can be calculated by the battery voltage drop across the diode and the resistor.

Please also pay attention to the Safety Guidelines in Section 5.2.

Printed Circuit Board Mounting

Never solder on the body of the battery directly, use a battery equipped with PC-mount terminals. When using automatic soldering apply 250–270°C within 5 seconds. Make sure that the battery is not suspended or dropped into the soldering bath.

Do not heat above 80°C to avoid leakage caused by deterioration in the battery’s performance.

<table>
<thead>
<tr>
<th>Type</th>
<th>Max. safe reverse current acc. to UL</th>
<th>Type</th>
<th>Max. safe current acc. to UL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Button Cells</td>
<td></td>
<td>Cylindrical Cells</td>
<td></td>
</tr>
<tr>
<td>CR 1216</td>
<td>3.0 mA High Capacity</td>
<td>CR 1/3 N</td>
<td>2.0 mA</td>
</tr>
<tr>
<td>CR 1220</td>
<td>3.0 mA CR 1/2 AA</td>
<td>CR 2320</td>
<td>5.0 mA CR 2/3 AH</td>
</tr>
<tr>
<td>CR 1616</td>
<td>4.0 mA CR 2/3 AA</td>
<td>CR 2450</td>
<td>15.0 mA CR 2</td>
</tr>
<tr>
<td>CR 1620</td>
<td>2.5 mA CR AA</td>
<td>CR 2430</td>
<td>15.0 mA CR 123 A</td>
</tr>
<tr>
<td>CR 2016</td>
<td>4.0 mA CR 2/3 A</td>
<td>CR 1/3 N</td>
<td>2.0 mA</td>
</tr>
<tr>
<td>CR 2025</td>
<td>5.0 mA</td>
<td>CR 2032</td>
<td>5.0 mA High Power</td>
</tr>
<tr>
<td>CR 2032</td>
<td>5.0 mA</td>
<td>CR 2320</td>
<td>5.0 mA CR 2/3 AH</td>
</tr>
<tr>
<td>CR 2430</td>
<td>15.0 mA CR 123 A</td>
<td>CR 2450</td>
<td>15.0 mA CR 2</td>
</tr>
<tr>
<td>CR 2450</td>
<td>15.0 mA CR 2</td>
<td>CR 2320</td>
<td>5.0 mA CR 2/3 AH</td>
</tr>
<tr>
<td>CR 2450</td>
<td>15.0 mA CR 2</td>
<td>CR 2450</td>
<td>15.0 mA CR 2</td>
</tr>
</tbody>
</table>

All listed cells/batteries are recognized by UL-recognition.
5.1 SAFETY TESTS

For safety aspects please consult Varta Microbattery before performing these extreme tests:

Compressión Test
1120 kg
- no significant electrolyte loss
- no rupturing

In Short Circuit
Condition 24 h, 0.1 Ω
- after 24 h the bottom of the cell is curved by only 0.1 mm; diameter unchanged
- no electrolyte creepage or loss
- no rupturing

Test at 150°C for 2 Hours
- no electrolyte creepage or loss
- no rupture
- no fire
- no explosion
- open circuit voltage almost unchanged at 3.2 V
- the cell base bowed, causing cell height to increase by 1 mm, diameter unchanged

Puncture Test total Penetration of the Cell by a Nail Ø 3mm
- no splashing or pressurized electrolyte loss
- no rupturing

Short Circuit
In table 11 the temperature is listed at short circuit at an ambient temperature of 20°C, 40°C and 70°C.

<table>
<thead>
<tr>
<th>Ambient temperature</th>
<th>CR 1/2 AA</th>
<th>CR 2/3 AA</th>
<th>CR AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>20°C</td>
<td>24°C</td>
<td>28°C</td>
<td>24°C</td>
</tr>
<tr>
<td>40°C</td>
<td>50°C</td>
<td>50°C</td>
<td>47°C</td>
</tr>
<tr>
<td>70°C</td>
<td>80°C</td>
<td>64°C</td>
<td>77°C</td>
</tr>
</tbody>
</table>

Temperature Characteristics
CR 1/2 AA, Temperature characteristics
Conditions: 20 h/20°C: 15 kΩ, 4 h/at various temp.: 270 kΩ

Vibration Test
Without changing of the electrical values the following Li-cell can be exposed to this vibration test:
- CR 1/2 AA
- CR 2/3 AA
- CR AA

Frequency range:
5 Hz ■ 55 Hz ■ 500 Hz ■ 55 Hz ■ 5 Hz
Amplitude at frequency range:
5 to 55 Hz: ± 0.75 mm
Acceleration at frequency range:
55 Hz to 500 Hz: 100 m/s²
Cycle duration: 15 min
Oscillation time of each main axis: 3 h
5.2 SAFETY GUIDELINES

5.3 OEM – APPLICATION CHECK LIST

1. PROJECT INFORMATION

<table>
<thead>
<tr>
<th>From (Writer)</th>
<th>Sales Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
<td>Application</td>
</tr>
<tr>
<td>Name of the project</td>
<td>Country</td>
</tr>
</tbody>
</table>

2. MARKETING DATA

<table>
<thead>
<tr>
<th>Yearly expectation of sales</th>
<th>Per batch of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated selling price</td>
<td>Expected data of first order</td>
</tr>
<tr>
<td>Lifetime of the project</td>
<td>Start of volume production</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Competitors</th>
<th>Yes □ No □</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substitution of existing product</td>
<td>Which</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments</th>
</tr>
</thead>
</table>

3. WHAT IS REQUIRED?

<table>
<thead>
<tr>
<th>Feasibility study, preliminary proposal</th>
<th>Yes □ No □</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical proposal</td>
<td>Yes □ No □</td>
</tr>
<tr>
<td>Preliminary drawing</td>
<td>Yes □ No □</td>
</tr>
<tr>
<td>Samples to run electric tests</td>
<td>Yes □ No □</td>
</tr>
<tr>
<td>Samples (with dummy cells)</td>
<td>Yes □ No □</td>
</tr>
<tr>
<td>Prototypes (for qualification by the customer)</td>
<td>Yes □ No □</td>
</tr>
<tr>
<td>Preliminary cost estimation (+/- 20%)</td>
<td>Yes □ No □</td>
</tr>
<tr>
<td>Development and industrial cost estimation</td>
<td>Yes □ No □</td>
</tr>
<tr>
<td>Product cost estimation (+/- 5%)</td>
<td>Yes □ No □</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reply wishes for</th>
<th>Reply provided for</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. TECHNICAL REQUIREMENTS

4.1. Storage before use

<table>
<thead>
<tr>
<th>Duration</th>
<th>Temperature min.</th>
<th>Average</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2. Storage into the device before operating

<table>
<thead>
<tr>
<th>Duration</th>
<th>Temperature min.</th>
<th>Average</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3. Specific tests prior incorporation

4.4. Electric data

<table>
<thead>
<tr>
<th>Required minimum life time in use</th>
<th>Nominal capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum voltage</td>
<td></td>
</tr>
<tr>
<td>Cut off voltage</td>
<td>Required minimum capacity</td>
</tr>
</tbody>
</table>
| Current profile (average current, current pulse strength, pulse duration, pulse rate…)
| Others |

4.5. Climatic data

<table>
<thead>
<tr>
<th>Operating temperature min.</th>
<th>Average</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Others
4.6. Mechanical data (vibration, drop, bump, shock, …)

Mention the applicable specification and enclose the document if necessary.

4.7. Available dimensions: (weight, volume, if possible enclose the user drawing of the prospect)

4.8. Assembly (describe or enclose a drawing)

4.9. Applicable specifications / standards

UL ☐ BS UN ☐ IEC86-4 ☐ Other ☐

Reference and issue

4.10. Reliability level – Guarantees

4.11. Labeling and Packaging

VARTA standard labeling and packaging ☐

Customised labeling ☐ (enclose the customer specification) Customised packaging ☐ (enclose the customer specification)

4.12. Attached documents

Samples ☐ Competitor samples ☐ Drawing ☐ Specification of the customer ☐

Copy of specific standards ☐ Samples of connector ☐ Samples of specific components ☐ Other ☐

4.13. Additional information
VARTA Microbattery GmbH Product Portfolio

<table>
<thead>
<tr>
<th>Primary Batteries</th>
<th>Lithium-Manganese Cells</th>
<th>Lithium-Thionyl-Chloride Cells</th>
<th>Zinc Air Cells</th>
<th>Alkaline Batteries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rechargeable Batteries</td>
<td>Li-Ion Button Cells</td>
<td>CoinPower</td>
<td>NIMH Button Cells</td>
<td>NIMH Cylindrical</td>
</tr>
<tr>
<td>Rechargeable Batteries</td>
<td>Li-Ion & Li-Polymer Batteries</td>
<td>Cylindrical & Prismatic & CellPac LITE</td>
<td>Li-Power Packs</td>
<td>CellPac PLUS CellPac BLOX Li-Power Packs Engion BIKE</td>
</tr>
<tr>
<td>Hydrogen Gas Generating Cells</td>
<td>VARTA H₂ Cells</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact

Headquarters
VARTA Microbattery GmbH, Daimlerstrasse 1, 73479 Ellwangen, Germany
Tel +49 79 61 921 - 0, Fax +49 79 61 921 - 553

America
VARTA Microbattery Inc.,
555 Theodore Fremd Avenue, Suite C 304
Rye, NY 10580, USA
Tel +1 914 592 25 00

France
VARTA Microbattery GmbH
12 - 14, Rue Raymond RIDEEL
92250 La Garenne Colombes, France
Tel +33 1 47 84 84 54

Asia Pacific
VARTA Microbattery Pte. Ltd.
300, Tampines Avenue 5, #05-01
Tampines Junction, 529653 Singapore
Tel +65 6 260 58 01

China
VARTA Microbattery Pte. Ltd.
Room 1702-3, 17/F., Fullerton Centre
19 Hung to Road, Kwan Tong
Kowloon, Hongkong
Tel +852 29 98 83 73

VARTA Microbattery (Shanghai) Co. Ltd.
Block 3, Shanghai Pudong Chuansha Industrial Park
No. 6999 Chuansha Road
Pudong New Area
201202 Shanghai, China
Tel +86 21 58 59 83 85

Japan
VARTA Microbattery Pte. Ltd.
Kyobashi Y’SUS Bldg,
3F.1-6-12, Kyobashi, Chuo-Ku
Tokyo 104-0031, Japan
Tel +81 3 35 67 81 71

Taiwan
VARTA Microbattery Pte. Ltd.
11F-4, No.130, Section 2
Chung Hsiao East Road
Taipei 10053, Taiwan
Tel +886 2 33 93 15 57
Fax +886 2 33 93 15 56

Distributors Distributors and representations in all major countries worldwide. Please see webpage.

www.varta-microbattery.com
For e-mail contact please visit: http://contact.varta-microbattery.com

VARTA Microbattery is a company of
Montana Tech Components AG,
Hauptstrasse 35, 5737 Menziken, Switzerland
www.montanatechcomponents.com